Teorema fundamental del cálculo
consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas.Esto significa que toda función acotada e integrable (siendo continua o discontinua en un número finito de puntos) verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo infinitesimal.
El teorema fue fundamental porque hasta entonces el cálculo aproximado de áreas -integrales- en el que se venía trabajando desde Arquímedes, era una rama de las matemáticas que se seguía por separado del cálculo diferencial que se venía desarrollando por Isaac Newton, Isaac Barrow y Gottfried Leibniz en el siglo XVIII, y dio lugar a conceptos como el de las derivadas. Las integrales eran investigadas como formas de estudiar áreas y volúmenes, hasta que en ese punto de la historia ambas ramas convergieron, al demostrarse que el estudio del "área bajo una función" estaba íntimamente vinculado al cálculo diferencial, resultando la integración la operación inversa a la derivación.
Una consecuencia directa de este teorema es la regla de Barrow,denominada en ocasiones segundo teorema fundamental del cálculo, y que permite calcular la integral de una función utilizando la integral indefinida de la función al ser integrada.
Intuición geométrica
Supóngase que se tiene una función continua y = f(x) cuya representación gráfica es una curva. Entonces, para cada valor de x tiene sentido de manera intuitiva pensar que existe una función A(x) que representa el área bajo la curva entre 0 y x aún sin conocer su expresión.
Supóngase ahora que se quiere calcular el área bajo la curva entre x y x+h. Se podría hacer hallando el área entre 0 y x+h y luego restando el área entre 0 y x. En resumen, el área sería A(x+h) − A(x).
Otra manera de estimar esta misma área es multiplicar h por f(x) para hallar el área de un rectángulo que coincide aproximadamente con la "loncha". Nótese que la aproximación al área buscada es más precisa cuanto más pequeño sea el valor de h.
El área rayada en rojo puede ser calculada como h veces f(x), o, si se conociera la función A(X), como A(x+h) − A(x). Estos valores son aproximadamente iguales, especialmente para valores pequeños de h.
Supóngase que se tiene una función continua y = f(x) cuya representación gráfica es una curva. Entonces, para cada valor de x tiene sentido de manera intuitiva pensar que existe una función A(x) que representa el área bajo la curva entre 0 y x aún sin conocer su expresión.
Supóngase ahora que se quiere calcular el área bajo la curva entre x y x+h. Se podría hacer hallando el área entre 0 y x+h y luego restando el área entre 0 y x. En resumen, el área sería A(x+h) − A(x).
Otra manera de estimar esta misma área es multiplicar h por f(x) para hallar el área de un rectángulo que coincide aproximadamente con la "loncha". Nótese que la aproximación al área buscada es más precisa cuanto más pequeño sea el valor de h.
Por lo tanto, se puede decir que A(x+h) − A(x) es aproximadamente igual a f(x) · h, y que la precisión de esta aproximación mejora al disminuir el valor de h. En otras palabras, ƒ(x)·h ≈ A(x+h) − A(x), convirtiéndose esta aproximación en igualdad cuando h tiende a 0 como límite.
Dividiendo los dos lados de la ecuación por h se obtiene
Cuando h tiende a 0, se observa que el miembro derecho de la ecuación es sencillamente la derivada A’(x) de la función A(x) y que el miembro izquierdo se queda en ƒ(x) al ya no estar h presente.
Se muestra entonces de manera informal que ƒ(x) = A’(x), es decir, que la derivada de la función de área A(x) es en realidad la función ƒ(x). Dicho de otra forma, la función de área A(x) es la antiderivada de la función original.


Lo que se ha mostrado es que, intuitivamente, calcular la derivada de una función y "hallar el área" bajo su curva son operaciones "inversas", es decir, el objetivo del teorema fundamental del cálculo integral.
Ejemplos




Teorema de la media

- es una propiedad de las funciones derivables en un intervalo. Algunos matemáticos consideran que este teorema es el más importante del cálculo (ver también el teorema fundamental del cálculo integral). El teorema de valor medio puede usarse para demostrar el teorema de Taylor y el teorema de Rolle, ya que ambos son un caso especial.
el teorema dice que dada cualquier función f continua en el intervalo [a, b] y derivable en el intervalo abierto (a, b), entonces existe al menos algún punto c en el intervalo (a, b) tal que la tangente a la curva en c es paralela a la recta secante que une los puntos (b, f(b)) y (a, f(a)). Es decir:

Este teorema lo formuló Lagrange.
El teorema del valor medio de Lagrange, de hecho, es una generalización del teorema de Rolle, que dice que si una función es definida y continua [a, b], diferenciable en el intervalo abierto (a, b), y toma valores iguales en los extremos del intervalo – en otras palabras, f(a) = f(b) – entonces existe al menos algún punto c en el intervalo (a, b) tal que la tangente a la curva en c es horizontal, es decir f'(c) = 0.
Demostración
1) Primero se consideran dos puntos

y

pertenecientes al gráfico de la función. La ecuación de la recta que pasa por estos dos puntos es:

Se define una función auxiliar:
![g(x) =
f(x) - y =
f(x) - \left[ f(a) + \frac{f(b)-f(a)}{b-a}(x-a) \right ]](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9d9e74dc16b1ccdd4f40e77d4f5c5c6a62a077e)
Puesto que f es continua en [a, b] y diferenciable en (a, b), lo mismo se puede decir de g. Además g satisface las condiciones del Teorema de Rolle en [a,b] ya que:

Por el Teorema de Rolle, como g es derivable en (a, b) y g(a) = g(b), existe un c perteneciente (a, b) tal que g'(c) = 0, y por tanto:

y así

que es lo que se quería demostrar.
2) Sea

la pendiente de la recta secante entre
![[a,b]](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4b788fc5c637e26ee98b45f89a5c08c85f7935)
, se define la ecuación punto-pendiente:


o también,

De acuerdo al enunciado la función es derivable en

, por lo que se puede escoger algún valor

en dicho intervalo tal que

existe y es la pendiente de la recta tangente en dicho punto y por ende la recta tangente tiene la forma (punto-pendiente):

o también,

Se observa que se llega a un sistema lineal de 2x2

La matriz del sistema es:

Y su determinante es:

Para que el sistema no tenga solución se debe cumplir det(A)=0, por lo tanto las rectas son paraleas en x=c, es decir f'(c) = mab
Entonces, existe al menos un punto que no da solución al sistema y además la recta tangente al mismo es paralela a la recta entre a y b, es decir:

o también,

Con ello queda demostrado el teorema del valor medio.